RecA protein-facilitated DNA strand breaks. A mechanism for bypassing DNA structural barriers during strand exchange.

نویسندگان

  • W A Bedale
  • R B Inman
  • M M Cox
چکیده

RecA protein promotes an unexpectedly efficient DNA strand exchange between circular single-stranded DNA and duplex DNAs containing short (50-400-base pair) heterologous sequences at the 5' (initiating) end. The major mechanism by which this topological barrier is bypassed involves DNA strand breakage. Breakage is both strand and position specific, occurring almost exclusively in the displaced (+) strand of the duplex within a 15-base pair region of the heterology/homology junction. Breakage also requires recA protein, ATP hydrolysis, and homologous sequences 3' to the heterology. Although the location of the breaks and the observed requirements clearly indicate a major role for recA protein in this phenomenon, the molecular mechanism is not yet clear. The breakage may reflect a DNA structure and/or some form of structural stress within the DNA during recA protein-mediated DNA pairing which either exposes the DNA at this precise position to the action of a contaminating nuclease or induces a direct mechanical break. We also find that when heterology is located at the 3' end of the linear duplex, strand exchange is halted (without DNA breakage) about 500 base pairs from the homology/heterology junction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the role of ATP hydrolysis in RecA protein-mediated DNA strand exchange. I. Bypassing a short heterologous insert in one DNA substrate.

RecA protein promotes a substantial DNA strand exchange reaction in the presence of adenosine 5'-O-3-(thio)triphosphate (ATP gamma S) (Menetski, J.P., Bear, D.G., and Kowalczykowski, S.C. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 21-25), calling into question the role of ATP hydrolysis in the strand exchange reaction. Here, we demonstrate that the ATP gamma S-mediated reaction can go to completi...

متن کامل

DNA Strand Exchange Promoted by RecA K72R

Replacement of lysine 72 in RecA protein with arginine produces a mutant protein that binds but does not hydrolyze ATP. The protein nevertheless promotes DNA strand exchange (Rehrauer, W. M., and Kowalczykowski, S. C. (1993) J. Biol. Chem. 268, 1292–1297). With RecA K72R protein, the formation of the hybrid DNA product of strand exchange is greatly affected by the concentration of Mg in ways th...

متن کامل

RuvA and RuvB Proteins Facilitate the Bypass

RecA protein-mediated DNA strand exchange between circular single-stranded DNA and linear duplex DNA readily bypasses short (up to 100 base pairs) heterologous inserts in one of the DNA substrates. Larger heterologous inserts are bypassed with decreasing efficiency, and inserts larger than 200 base pairs substantially block RecA-mediated DNA strand exchange. The RuvA and RuvB proteins dramatica...

متن کامل

On the mechanism of RecA-mediated repair of double-strand breaks: no role for four-strand DNA pairing intermediates.

RecA protein will bind to a gapped duplex DNA molecule and promote a DNA strand exchange with a second homologous linear duplex. A double-strand break in the second duplex is efficiently bypassed in the course of these reactions. We demonstrate that the bypass of double-strand breaks is not explained by a mechanism involving homologous interactions between two duplex DNA molecules, but instead ...

متن کامل

A novel property of the RecA nucleoprotein filament: activation of double- stranded DNA for strand exchange in trans.

RecA protein catalyzes DNA strand exchange, a basic step of homologous recombination. Upon binding to single-stranded DNA (ssDNA), RecA protein forms a helical nucleoprotein filament. Normally, this nucleoprotein filament binds double-stranded DNA (dsDNA) and promotes exchange of base pairs between this dsDNA and the homologous ssDNA that is contained within this filament. Here, we demonstrate ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 266 10  شماره 

صفحات  -

تاریخ انتشار 1991